高金国,谢泽辰,宋海燕,王立军.非高斯激励下产品振动响应有限元分析[J].包装工程,2025,(9):278-285.
GAO Jinguo,XIE Zechen,SONG Haiyan,WANG Lijun.Finite Element Analysis of Product Vibration Response Under Non-Gaussian Excitation[J].Packaging Engineering,2025,(9):278-285.
非高斯激励下产品振动响应有限元分析
Finite Element Analysis of Product Vibration Response Under Non-Gaussian Excitation
投稿时间:2025-01-23  
DOI:10.19554/j.cnki.1001-3563.2025.09.032
中文关键词:  非高斯  有限元分析  峭度  振动响应
英文关键词:non-Gaussian  finite element analysis  kurtosis  vibration response
基金项目:国家自然科学基金(32202116)
作者单位
高金国 天津科技大学 轻工科学与工程学院 生物基纤维材料全国重点实验室,天津 300457 
谢泽辰 天津科技大学 轻工科学与工程学院 生物基纤维材料全国重点实验室,天津 300457 
宋海燕 天津科技大学 轻工科学与工程学院 生物基纤维材料全国重点实验室,天津 300457 
王立军 天津科技大学 轻工科学与工程学院 生物基纤维材料全国重点实验室,天津 300457 
AuthorInstitution
GAO Jinguo School of Light Industry Science and Engineering,State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science & Technology, Tianjin 300457, China 
XIE Zechen School of Light Industry Science and Engineering,State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science & Technology, Tianjin 300457, China 
SONG Haiyan School of Light Industry Science and Engineering,State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science & Technology, Tianjin 300457, China 
WANG Lijun School of Light Industry Science and Engineering,State Key Laboratory of Bio-based Fiber Materials, Tianjin University of Science & Technology, Tianjin 300457, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究非高斯激励信号的峭度对产品振动响应的影响。方法 选取了3个标准激励谱、3个振动等级进行加速度信号采集,使用Hermite多项式法将采集的信号转化成具有相同PSD、不同峭度的振动加速度信号。应用有限元法对产品进行非高斯振动分析,探究不同峭度对产品振动响应的影响。结果 当振动激励为高斯激励时,产品振动响应近似服从高斯分布;在非高斯振动激励下,产品的响应峭度与激励峭度呈现线性增加的关系。以ISTA 3A谱0.563g振动等级激励为例,与高斯激励相比,5、9、13、17和21峭度激励下产品响应峭度值分别提升31.33%、93.44%、153.73%、212.65%和270.51%。在相同谱型、相同峭度激励下,产品的响应峭度随着激励振动等级的增加而增大,当振动激励峭度达到21时,ISTA 3A谱、白噪声谱、GB/T谱激励下最高振动等级响应峭度分别为最低振动等级响应峭度的159.03%、151.36%、150.13%。结论 在运输过程中,当振动激励信号为非高斯激励时,产品的振动响应峭度随着激励峭度的增大而呈现线性增长趋势,且产品的振动响应峭度与激励信号的振动等级之间存在明显的正相关性。
英文摘要:
      The work aims to investigate the effect of the kurtosis of the non-Gaussian excitation signal on the vibration response of the product. Three standard excitation spectra and three vibration levels were selected for acceleration signal acquisition, and the Hermite polynomial method was used to convert the collected signals into vibration acceleration signals with the same PSD and different kurtosis. The finite element method was used to analyze the non-Gaussian vibration of the product, and the effect of different kurtosis on the vibration response of the product was explored. When the vibration excitation was Gaussian, the vibration response of the product was approximately Gaussian distribution. Under the excitation of non-Gaussian vibration, the response kurtosis of the product and the excitation kurtosis of the product increased linearly. With the ISTA 3A spectrum of 0.563g vibration level excitation as an example, compared with the Gaussian excitation, the response kurtosis values of the product under 5, 9, 13, 17 and 21 kurtosis excitation increased by 31.33%, 93.44%, 153.73%, 212.65% and 270.51%, respectively. Under the same spectral pattern and kurtosis excitation, the kurtosis of the product response increased with the increase of the excitation vibration level. When the vibration excitation kurtosis reached 21, the response kurtosis of the highest vibration level under ISTA 3A, white noise and GB/T spectral excitation reached 159.03%, 151.36% and 150.13% of the response kurtosis of the lowest vibration level, respectively. During transportation, when the vibration excitation signal is non-Gaussian, the vibration response kurtosis of the product increases linearly with the increase of the excitation kurtosis, and there is an obvious positive correlation between the vibration response kurtosis of the product and the vibration level of the excitation signal.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第28664535位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

渝公网安备 50010702501716号