装备防护

低介电片状 FeNi 吸波剂的山嵛酸辅助制备及其织构行为

王睿^a, 王峰^a, 徐逸凡^b, 官建国^{a,b}, 陈志宏^{c*}

(武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院

c.理学院,武汉 430070)

摘要:目的 在吸波剂表面化学吸附一层绝缘小分子,制备低介电常数且耐腐蚀的低频吸波剂。方法 通 过机械化学处理活化合金粒子表面,增强山嵛酸与合金粒子间形成的化学吸附,从而制备具有低介电常 数、光滑表面、高晶粒取向度和耐腐蚀的片状 Fe₅₀Ni₅₀@山嵛酸吸波剂。结果 形成的山嵛酸包覆层可调 控球磨过程中粉体间的冷焊效应和粉体受到的外界载荷,诱导 Fe₅₀Ni₅₀粉体沼 {111}晶面的滑移,促使粉 体内形成 {001}面织构。同时,绝缘且疏水的山嵛酸包覆层可阻碍粉体间导电网络的形成,降低片状 Fe₅₀Ni₅₀ 吸波剂的介电常数,使粉体兼具低介电常数、高磁导率和耐腐蚀能力。结论 Fe₅₀Ni₅₀@山嵛酸 吸波剂粒子展现出良好的低频吸波性能和耐腐蚀能力,为发展兼具优良耐环境性能和低频强吸收能力的 新型吸波材料提供了一种思路。

关键词: 电磁吸波材料; 机械化学改性; 脂肪酸; 低频; 耐腐蚀 中图分类号: TB34 文献标志码: A 文章编号: 1001-3563(2024)01-0262-11 DOI: 10.19554/j.cnki.1001-3563.2024.01.031

Behenic Acid-assisted Preparation of Low Permittivity Flaky FeNi Absorbent and Its Texture Behavior

WANG Rui^a, WANG Feng^a, XU Yifan^b, GUAN Jianguo^{a,b}, CHEN Zhihong^{c*}

(a. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b. International School of Materials Science and Engineering, c. School of Science, Wuhan University of Technology, Wuhan 430070, China)

ABSTRACT: The work aims to chemically adsorb a layer of small insulating molecules on the surface of microwave absorbent to prepare a low frequency wave absorbent of low permittivity and high corrosion resistance. The particle surface of alloywas treated by mechano-chemical ball milling to enhance the chemical adsorption between behenic acid and the absorbent, so as to prepare a flaky $Fe_{50}Ni_{50}$ @behenic acid composite absorbent with low permittivity, smooth surface, high grain orientation and corrosion resistance. The behenic acid coating could regulate the cold-welding effect among powder, induce the slipping of $Fe_{50}Ni_{50}$ powder along the {111} crystal planes, and promote the formation of {001} texture in the powder. At the same time, the insulated and hydrophobic behenic acid coating could prevent the formation of conductive network among powder and reduce the permittivity of flaky $Fe_{50}Ni_{50}$. Thus, the powder had low permittivity, high permeability and corrosion resistance. In conclusion, $Fe_{50}Ni_{50}$ @behenic acid wave absorbent particles show good low frequency wave absorption and corrosion resistance and strong low frequency wave absorption ability.

KEY WORDS: electromagnetic absorbing material; mechano-chemical modification; fatty acid; low frequency; corrosion resistance

收稿日期: 2023-07-18

基金项目:国家自然科学基金(52071239) *通信作者

• 263 •

近年来,随着雷达探测技术的发展,低频耐环境吸 波材料变得越来越重要^[1-3]。例如,海上装备使用的吸 波材料不仅需要对更低频率(L、S 波段)实现低可探 测状态,也必须兼具更强的耐腐蚀性能。为此发展低频 耐腐蚀吸波材料已逐渐成为人们关注的焦点。

FeNi 吸波剂具有饱和磁化强度高、磁共振频率低的特点,在制备低频吸波材料方面较有潜力^[4-5]。同时, FeNi吸波剂在不同pH值和盐雾环境下具有优良的耐腐蚀性能,因此,在众多磁性吸波材料(如FeSiAl^[1, 6]、 FeSi^[7-8]、FeSiCr^[9-10]等)中脱颖而出。然而,由于该类 材料本征电导率高,导致其存在复介电常数大、阻抗匹 配差和吸波能力弱的问题,这极大地限制了其应用。

目前,在降低吸波材料的复介电常数方面通常采 用有机或无机绝缘包覆方法。这种核壳结构能有效阻 碍颗粒间导电网络的形成,从而达到降低复介电常数 的目的。然而,对无机包覆层而言,例如 SiO₂^[11-14]、 Al₂O₃^[15]、Fe₃O₄^[16]等,最大的问题在于其本身为非磁 性或弱磁性物质,对吸波材料磁导率的影响较大。相 反,有机包覆例如有机硅^[17]或硅烷偶联剂^[18-19]能很好 地避开这方面的问题,但以有机硅为代表的大分子有 机物包覆易造成团聚,这将降低粉体的分散性。虽然 以硅烷偶联剂为代表的小分子有机物包覆可以避免 该类问题,却也因粉体表面无法提供足量的附着位 点,导致包覆效果降低。

机械化学处理是增加小分子有机物吸附的有效 方式,而最具代表性的小分子有机物为脂肪酸^[20-21]。 它独特的双亲基团(羧基和烷基链)为其在金属表面 吸附提供了有利条件。同时,它低的介电常数(2~4) 和亲油疏水特性不仅可以降低吸波材料复介电常数, 也可以提高其耐腐蚀性能。机械球磨是机械化学处理 中的一种方式,同时也是制备片状吸波剂的重要手段。 然而,在过去的工作中人们将重点多放在脂肪酸与金属 表面的吸附机制上,对磁性吸波剂的粉体特征、晶体结 构和吸波性能的影响及作用机制的相关研究较少。因 此,研究脂肪酸辅助球磨过程对 FeNi 粉体的影响,对 提高 FeNi 粉体的实际应用具有重要意义。

本文中采用山嵛酸(Behenic Acid, BA)这种典型的脂肪酸小分子辅助球磨,制备了片状 Fe₅₀Ni₅₀@BA 吸 波剂。利用山嵛酸对合金表面 Fe、Ni 元素的物理或 化学吸附,形成表面分子包覆层,探究山嵛酸辅助球 磨对 Fe₅₀Ni₅₀粉体的形貌、表面组成、腐蚀行为、晶 体结构和吸波性能的影响。该方法制备的片状 Fe₅₀Ni₅₀@BA 粒子可获得较低的 ε'和 ε''值,从而使得 其复合材料的阻抗匹配和吸波性能得到提升。

1 实验

1.1 材料和仪器

主要材料: Fe₅₀Ni₅₀ 粉体,采自中国湖南省冶金

材料研究院有限公司,产品出厂已过 500 目筛;山嵛 酸[CH₃(CH₂)₂₀COOH],采自阿拉丁工业公司,分析 纯级;环己烷(C₆H₁₂),采自中国国药集团化学试剂 公司,分析纯级。

主要仪器: F-P2000E 行星球磨机,中国南大机 械,自带 4 个 250 mL 淬火钢制成的球磨罐; SHZ-DIII 循环水式真空泵, 巩义市予华仪器有限责任公司; DZG-6050 真空干燥箱,上海森信实验仪器有限公司。

1.2 方法

具体实验过程如下:首先将 19g Fe₅₀Ni₅₀粉体、 60 mL 环己烷、380g 直径为 6 mm 的氧化锆球和一定 量的山嵛酸添加到球磨罐中,并以 300 r/min 的转速 运行设备。待球磨结束后,采用真空抽离的方式分离 固液,期间需用无水乙醇冲洗 3 次。之后放入常温真 空干燥箱中,真空保存 24 h 后待测。这里将添加质 量分数为 0、1%、2%和 3%的山嵛酸辅助球磨后的样 品分别标记为 F0、F1、F2 和 F3。

1.3 表征及测试

1.3.1 粉体形貌和结构表征

利用场发射扫描电子显微镜(SEM,日本日立 Hitachi S-4800)分析 $Fe_{50}Ni_{50}$ @BA 粒子的微观形貌。 通过激光粒径分析仪(英国 Mastersizer 2000)获得 粒径分布。采用 X 射线衍射(XRD,日本理学株式 会社 D/MAX-RB, Cu Ka 辐射, λ =0.154 06 nm,扫 描范围为 20°~90°)对 $Fe_{50}Ni_{50}$ @BA 粒子进行相结构 表征。采用 X 射线光电子能谱仪(XPS, ESCALAB 250Xi)表征样品的表面元素组成和价态。

1.3.2 耐腐蚀性能表征

利用接触角/表面张力测量仪(德国 Kruss DSA100)测试样品与水之间的接触角。实验中采用 压片法制样,记录时间点为1s时的测试结果。最后 采用电化学工作站(瑞士万通 PGSTAT 302N)测试 样品的 Tafel 曲线,并计算相关的电化学参数。

1.3.3 电磁性能表征

使用振动样品磁强计(VSM, Lake Shore 7400S)测量磁滞回线。采用矢量网络分析仪(VNA, Aglient N5247A)测量复合材料在 0.1~18 GHz 频率范围内的 复介电常数和复磁导率。实验前需将熔融石蜡与吸波剂(质量比为1:3)共混,然后制备成外径为7 mm、内径为3 mm、厚度为2~2.5 mm 的同轴环样品。

2 结果与讨论

2.1 山嵛酸辅助球磨过程对 Fe₅₀Ni₅₀粉体表 面状态的改变

图 1 所示为球磨 20 h 后不同样品的 SEM 图像及

图 1 SEM 图像及粒径分布 Fig.1 SEM images and particle size distribution

粒径分布。从 SEM 图像中可以看出,不同样品的粉 体颗粒均呈现为片状。有趣的是,样品 F0 的颗粒表 面更粗糙,且边缘具有明显的不规则纹理,如图 1a 所示。相反, 球磨相同时间的样品 F1、F2 和 F3 的颗 粒表面和边缘则显得更加光滑,如图 1b、c 和 d 所示。 为进一步分析产生该变化的原因,可以观察不同样品 截面的 SEM 图像。如图 1a 所示,样品 F0 的粉体颗 粒是由众多厚度更小(平均厚度约为 165 nm)的薄 片堆叠而成,整体厚度约为2.31 μm。反观样品F1、 F2 和 F3 则没有出现明显的层状结构, 且厚度上也略 小于样品 F0, 分别约为 2.08、2.17 和 2.28 µm。因此, 随着 BA 的引入, 球磨过程中的冷焊作用被抑制。此 外,图1给出了不同样品的粒径分布,平均粒径(d₅₀) 由大到小排列为 F0、F1、F2、F3, 数值分别为 46.103、 39.515、37.039 和 35.083 µm。这说明随着 BA 引入 量的增大,粉体颗粒的平均粒径减小,即粉体的塑型 变形减弱。

为解释上述现象产生的原因,需要从两方面分 析。首先, BA 的引入会抑制球磨过程中颗粒间的冷 焊作用,这会阻止大片颗粒的形成。在球磨过程中, 粉体由于受到磨球碰撞时产生的冲击载荷,从球形变 为片状。该过程中会诞生许多新表面,促使粉体的表 面能快速增加。通过简单计算,相同体积的球形粉体 变为厚度为 2 μm 的圆柱形粉体时, 其表面积会增加 约 135.66%。通过文献[22]可知, 当不添加 BA 时, 高表面能会导致小片颗粒通过冷焊形成大片颗粒。随 着机械球磨的进一步进行,颗粒内部的应变逐渐增 加,导致位错发生滑移、交割和累积,形成高密度位 错,进而逐步演化为纳米级位错墙,最终粉体的塑性 和韧性降低,在冲击载荷的作用下发生断裂^[23],该效 应也使得颗粒边缘变得更加粗糙。随着 BA 的引入, 在溶液环境中粉体颗粒会被 BA 迅速包裹,产生的新 表面可与BA间形成化学键,这将导致其表面能降低, 阻碍冷焊作用,减少大片颗粒的形成^[22, 24]。其次, BA 的引入对粉体表面起到了润滑作用,也可减小颗 粒表面受到的磨损。

由于表层元素的价态和浓度与有机膜的厚度有 很好的相关性,所以对样品进行 XPS 测试。图 2 和 表 1 分别给出了不同样品的 XPS 及其定量分析。如 图 2b 所示,C 1s 的窄谱图在 284.7、285.1 和 288.7 eV 附近的结合能峰可能来自 C-H 键、C-O 键和 C = O 键,依次对应于烷基链、醇和羰基。值得注意的是, 随着 BA 引入量的增加,颗粒表面的 C-H 键占比在 增大,这充分说明颗粒表面 BA 的附着量会随着 BA 引入量的增加而增多。另外,Fe 2p 的窄谱图 在 707.3、710.6、713.3 和 716.99 eV 附近的结合能峰 分别对应 Fe⁰、FeO、Fe₂O₃ 和 FeOOH。同样地,随 着 BA 引入量的增加,Fe⁰占比的减少也能说明 BA 包覆层厚度的增加。结合表 1 所示,样品 F2 的 C/Fe 值最高,因此仅质量分数为2%的山嵛酸辅助球磨,其 包覆层厚度已经趋于饱和。而样品F3的C/Fe值反而减 小,这可能是由于部分包覆层发生了脱落,因此过多的 BA并不利于与颗粒表面形成有效的化学连接。

Fig.2 XPS graph

表 1 颗粒表面的元素组成 Tab.1 Element composition on particle surface

样品	元素体积分数/%				C/Fa
	С	О	Fe	Ni	C/Fe
F0	26.93	34.97	23.55	14.56	1.14
F1	57.03	14.71	23.23	5.02	2.46
F2	66.75	16.37	12.03	4.85	5.55
F3	64.92	16.85	13.99	4.24	4.64

此时,山嵛酸在 Fe₅₀Ni₅₀ 合金表面形成的化学吸附层的分子结构如图 3 所示。受到表面 BA 包覆层的影响,样品 F0、F1、F2 和 F3 与水之间的接触角逐渐增大。众所周知,当接触角小于 90°时代表溶液可以润湿颗粒表面,反之当接触角大于 90°时表示溶液不能润湿颗粒表面。从图 4 中可以看出,当 BA 的引入量(质量分数)从 0%增加到 3%时,接触角由 51.3°增加到 119.5°,这表明 BA 包覆层可以有效降低粉体与水之间的润湿性。产生该现象的原因是 BA 分子与合金表面接触时,尾端羧基更容易与表面形成化学连接,从而将头部疏水的烷基链暴露于空气中,使粉体具有了疏水性。

图 3 山嵛酸在 Fe₅₀Ni₅₀ 合金表面形成的化学吸附层示意图 Fig.3 Schematic diagram of behenic acid layer absorbed on the surface of Fe₅₀Ni₅₀ alloy 注: 左侧为山嵛酸分子与 Fe₅₀Ni₅₀ 合金表面的氧化物/氢氧化物形成氢键,从而发生物理吸附; 右侧为由于摩擦引起的化学吸附,以及形成的羧酸铁结构。

粉体的疏水性是提高 Fe₅₀Ni₅₀粉体耐腐蚀性能的 关键。为验证 Fe₅₀Ni₅₀@BA 粒子的耐腐蚀性能,将样 品 F0、F1、F2 和 F3 浸泡在质量分数为 3.5%的 NaCl

水溶液中,并测试了不同样品的 Tafel 曲线,如图 5a 所示。采用 Tafel 图测定腐蚀电位(Ecorr)、腐蚀电流 (*I*_{corr})、腐蚀速率(Corrosion Rate, *C*_r)和极化电阻 (Polarization Resistance, R_p)是对比合金粉体腐蚀 倾向和腐蚀速率的重要手段。实际测试中, 通过比重 瓶法获得 Fe₅₀Ni₅₀ 合金粉体的密度约为 8.3 g/cm³,代 入电化学工作站的计算程序,可以获得相关的电化学 参数,如图 5b 所示。由此可知,随着 BA 的引入, Ecorr 逐渐由-0.578 V(样品 F0)增加到-0.197 V(样 品 F1)、-0.199 V(样品 F2)和-0.163 V(样品 F3); *I*_{corr}逐渐由 0.516 μA(样品 F0)降低到 0.174 μA(样 品 F1)、0.043 µA(样品 F2)和 0.037 µA(样品 F3); R_p逐渐由 50.349 kΩ(样品 F0)增加到 149.470 kΩ(样 品 F1)、603.850 kΩ(样品 F2)和 708.750 kΩ(样品 F3); Cr逐渐由5695 µm/a(样品F0)降低到1918 µm/a (样品 F1)、474 µm/a(样品 F2)和 404 µm/a(样品 F3)。这说明 BA 包覆层对 Fe50Ni50 粉体的耐腐蚀性能 是十分有利的。其中,样品 F3 的耐腐蚀性能最优, 其 C_r 约为样品 F0 的 7.1%, 而样品 F1 和 F2 的 C_r

分别约为样品 F0 的 33.7%和 8.3%。由于样品 F2 与 样品 F3 的腐蚀速率相差不大,这也再次说明,仅需 质量分数为 2%的 BA,就可获得厚度趋于饱和的 BA 包覆层,这与前文的结论相同。

2.2 山嵛酸辅助球磨过程中 Fe₅Ni₅ 粉体的 晶粒取向行为

从图 6a~e 中可以看出,不同样品在 43.64°、 50.82°和 74.74°附近均存在 3 个明显的衍射峰,这

也分别对应着 FCC 相的(111)、(200)和(220)晶面。 通过 Jade 分析可知,它们应来自于[Fe,Ni](PDF #47-1417)相。有趣的是,样品 F1、F2 和 F3 的(111) 和(200)晶面的衍射峰的相对强度比(*I*₂₀₀/*I*₁₁₁)发生 了变化,这主要是粉体表面的晶粒存在择优取向的 结果。如图 6f 所示,样品 F1、F2 和 F3 的 *I*₂₀₀/*I*₁₁₁ 和(200)晶面取向度明显高于样品 F0,其最大值分 别为 2.04 和 42.10%。

产生该现象的主要原因有: 在测试过程中, 片 状颗粒所在的平面往往平行于样品夹表面, 宏观颗 粒的取向会导致测试结果表现出个别衍射峰的增 强;当片状颗粒分散在 XRD 的样品夹上时,几乎所 有薄片趋于将平坦的表面按照水平方式排布, 这会 导致个别衍射峰的相对强度优先增强(在本文中特 指 I200)^[25-26]; 片状颗粒表面形成特殊织构。显然, 在样品 F1、F2 和 F3 内存在特殊的{001}面织构。 {001} 面织构形成的主要原因是受垂直于[110] 晶向 的外界载荷影响,促使{111}平面旋转并产生滑移, 导致{001}晶面平行于片状颗粒的表面^[26]。BA 的引 入对粉体表面起到了润滑作用,促使粉体表面受到 的冲击载荷减小。当粉体受到的冲击载荷减小到只 能维持晶格沿{111}<110>滑移时, {001}织构将变得 更加容易产生,因此样品 F1 的 I200/I111 明显增大。然 而,随着山嵛酸的过量引入,粉体表面受到的冲击 载荷不断减小,直至沿{111}面的滑移也变得困难, 这就导致{001}织构难以产生。

2.3 Fe₅₀Ni₅₀@BA 吸波剂的电磁性能

图 7 给出了不同的样品在 20 ℃时的磁滞回线, 并配有矫顽力与饱和磁化强度的变化曲线。如图 7b 所示,矫顽力由大到小排列为 F0、F1、F2 和 F3,而 饱和磁化强度大小正好与之相反。这是由于矫顽力的 增大,使样品在外界磁场下磁化强度方向更难统一, 因此导致饱和磁化强度减小。文中,影响矫顽力的因 素主要是内应力,它主要来源于粉体内部无法释放的 内应变。这也从侧面说明,BA 的引入可以减小粉体 表面受到的冲击载荷。

电磁参数是解释电磁吸收剂对电磁波吸收内在 机理的重要依据。通常吸波材料测量的电磁参数是复 介电常数($\varepsilon_r = \varepsilon' - j\varepsilon''$)和复磁导率($\mu_r = \mu' - j\mu''$)。复介 电常数和复磁导率的实部(ε', μ')分别代表材料对 电磁波产生的交变电场能量和交变磁场能量的存储 能力,而两者的虚部(ε^{''}、μ^{''})则表示材料对电磁波 能量的介电损耗和磁损耗性能^[27-28]。

对于不同电磁吸波材料,复介电常数通常可以用 式(1)~(2)表示^[29]

$$\varepsilon' = \frac{\varepsilon_{\rm m}}{1 + (\varepsilon_{\rm m} - 1)^{U_{\varepsilon}}} \left\{ \left[\left(\frac{\sigma_{\rm f}}{\omega \varepsilon_{\rm 0}} \right)^{V_{\rm f}} \left(\varepsilon_{\rm m} - a \right)^{1 - V_{\rm f}} \cos\left(\frac{\pi V_{\rm f}}{2} \right) \right]^{U_{\varepsilon}} + 1 \right\} (1)$$
$$\varepsilon'' = \frac{\sigma_{\rm ac}}{\omega \varepsilon_{\rm 0}} \tag{2}$$

这里
$$\sigma_{ac}$$
、 U_{ε} 的关系可由方程(3)~(4) 表示

$$\sigma_{\rm ac} = (\sigma_{\rm f} - \sigma_{\rm m}) \left\{ \left[\frac{2\pi f \varepsilon_0 (\varepsilon_{\rm m} - 1)}{\sigma_{\rm f}} \right]^{1 - V_{\rm f}} \sin\left(\frac{\pi V_{\rm f}}{2}\right) \right\}^{U_{\rm c}} + \sigma_{\rm m} \quad (3)$$

$$U_{\varepsilon} = \frac{1}{2} \left[\frac{\coth(e)}{e} - \frac{1}{e^2} \right]$$
(4)

式中: ϵ_m 、 ϵ_0 分别为基质(石蜡)和自由空间的 介电常数; ω 为角频率; V_f为吸波剂在复合材料整体 中的体积分数; $\sigma_{\rm f}$ 、 $\sigma_{\rm m}$ 分别为吸波剂和基体的电导率; e 为扁球形粒子的偏心率, e = t/D - 1, 对于片状吸波 剂, *t*和 D 分别为厚度和面内直径。由此可知, 在体 积填充分数相同的条件下, Fe50Ni50@BA 粒子通过减 小偏心率和电导率,可有效降低 Fe50Ni50 粉体的 ɛ'和 ε"。采用同轴法测试不同样品与石蜡质量比为 3:1 时的复介电常数和复磁导率,具体结果如图8所示。 从图 8 中可以看出,在 1~8 GHz 的频率范围内,不 同样品的 ε'和 ε"均满足 F0>F1>F2≈F3。导致样品 F0 复介电常数异常高的原因是样品 F0 具有宽厚比更 大的片状颗粒,以及颗粒之间容易形成导电网络。 然而,相比于复介电常数,样品 F0 和 F1 复磁导率 的变化不大,但这对提高 FeNi 吸波剂的磁损耗性能 是有利的。

图 7 不同样品球磨 20 h 后的静磁性能 Fig.7 Magnetostatic properties of different samples after ball milling for 20 h

因此,山嵛酸辅助球磨过程对复介电常数的影响,认为主要有两方面的原因:山嵛酸作为绝缘材料,可以有效阻碍片状 Fe₅₀Ni₅₀粉体间导电网络的形成,降低整体的电导率;山嵛酸辅助球磨能起到润滑剂的效果,从而阻碍颗粒间的冷焊作用,导致吸波剂粒子的偏心率降低且粒子表面更光滑。表面光滑的片状结构加之山嵛酸包覆层,减少了粉体内部的电子极化,进而降低了吸波材料的介电常数。

已知电磁参数,可以根据传输线理论计算电磁波 反射损耗(Reflection Loss, R_L)和阻抗变化(Z_{in}/Z_0), 公式如下^[30]:

$$R_{\rm L} = 20 \lg \left| \frac{Z_{\rm in} - Z_0}{Z_{\rm in} + Z_0} \right| \tag{6}$$

$$\frac{Z_{\rm in}}{Z_0} = \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}} \tanh\left(j\frac{2\pi f d}{c}\sqrt{\mu_{\rm r}\varepsilon_{\rm r}}\right)$$
(7)

式中: c 为电磁波传播的速度; Z_0 为空气阻抗; Z_{in} 为吸波材料的归一化输入阻抗; d 为复合材料的厚度。由此可计算,在 1~4 GHz 内不同材料在不同厚度下的 R_L 曲线。众所周知, R_L 低于-6 dB 时, 代表约 75%的入射电磁波被吸收。如图 9 所示,在 1~4 GHz 频率内,不同厚度下样品 F0 的反射损耗均大于-6 dB。 相反,当厚度为1.5 mm时,样品F1的反射损耗最小 值为-8.05 dB,对应频率为3.09 GHz。此时,样品F2 和F3的反射损耗最小值对应频率则大于4 GHz,当 频率为4 GHz 时其 R_L分别为-7.87 dB和-7.50 dB。 样品F1、F2和F3的有效带宽(<-6 dB)分别为1.44、 0.73和0.55 GHz。因此,在厚度为1.5 mm时,质量 分数为1%的山嵛酸辅助球磨能提高片状Fe₅₀Ni₅₀吸 波剂在S波段下的吸波性能。然而,随着吸波材料厚 度的增加,样品F1、F2和F3的反射损耗最小值逐渐 向低频区移动。随着山嵛酸引入量的增大,吸波材料 在同一厚度下的反射损耗最小值却向高频移动。因此 样品F2和F3并不适用于对吸波材料厚度有要求的应 用场景。

针对粒子吸波机理,Fe₅₀Ni₅₀@BA 粒子吸波性能 的增强归功于独特的山嵛酸包覆层结构。首先,纯 Fe₅₀Ni₅₀ 吸波性能弱的原因是复介电常数较高导致了 吸波材料阻抗失配。而山嵛酸包覆层可以有效阻碍颗 粒间导电网络的形成,减小吸波材料内部的涡流效 应,促使更多的电磁波进入材料内部。此外,通过界 面极化、自然共振和其他机制,电磁波在进入吸波材 料内部时会被逐步损耗。因而,与纯 Fe₅₀Ni₅₀相比, Fe₅₀Ni₅₀@BA 粒子的吸波性能得到了提高。

图 9 模拟的反射损耗曲线 Fig.9 Simulated reflection loss curves

3 结语

本文中重点分析了山嵛酸辅助球磨对 Fe₅₀Ni₅₀ 粉 体的颗粒形貌、表面组成、晶体结构、电磁性能和耐 腐蚀性能的影响。通过对比不同含量山嵛酸辅助球磨 的 Fe₅₀Ni₅₀ 粉体的耐腐蚀性能、晶粒取向、电磁参数 和反射损耗,本文发展了一种低介电常数、高磁导率 且耐腐蚀的低频吸波剂,并得出以下结论:

1)当山嵛酸的引入量为 2%时, Fe₅₀Ni₅₀粉体表 面的 C/Fe 值达到最大值,为 5.55,表明山嵛酸吸附 层的厚度已趋于饱和。

2)山嵛酸包覆层的存在使 Fe₅₀Ni₅₀ 粉体与水的 接触角由 51.3°变为 119.5°,使粉体具有了疏水性。 这是提高 Fe₅₀Ni₅₀ 粉体耐腐蚀性能的关键。当山嵛酸 的引入量为 1%、球磨时间为 20 h 时,相较于纯 Fe₅₀Ni₅₀, Fe₅₀Ni₅₀@BA 粒子的腐蚀电位由-0.578 V 增加到-0.197 V,腐蚀电阻由 50.349 kΩ 增加到 149.470 kΩ,腐蚀电流由 0.516 μA 降到 0.174 μA,展 现出良好的耐腐蚀性能。

3)山嵛酸辅助球磨会使 Fe₅₀Ni₅₀ 粉体形成特殊的{001}面织构。当山嵛酸质量分数为 1%、球磨时间为 20 h 时, Fe₅₀Ni₅₀ 粉体的 *I*₂₀₀/*I*₁₁₁和(200)晶面取向 度最大,分别为 2.04 和 42.10%。

4)山嵛酸辅助球磨制备的 Fe₅₀Ni₅₀@BA 吸波 剂,可以优化吸波材料的阻抗特性,提高吸波性能。 相比纯 Fe₅₀Ni₅₀,样品 F1 的吸波性能得到显著增强。 当厚度为 1.5 mm 时,添加质量分数为 75%的样品 F1 制备的石蜡基复合材料在 S 波段的反射损耗达 到-8.05 dB。

• 271 •

参考文献:

- [1] LI J Y, GUO Y, YANG R Q, et al. Achieving Ultra-Low Frequency Microwave Absorbing Properties Based on Anti-Corrosive Silica-Pinned Flake FeSiAl Hybrid with Full L Band Absorption[J]. Journal of Alloys and Compounds, 2021, 888: 161574.
- [2] WANG X K, SHI Z W, XU B S, et al. Study of Wave-Absorbing Coating Failure by Electrochemical Measurements[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 7086-7096.
- [3] JIANG X Y, ZHANG L B, YIN L J, et al. Corrosion Behavior of Fluorinated Carbonyl Iron-Hydrophobic Composites in Neutral Salt Spray Environment[J]. Corrosion Science, 2022, 210(2): 110823.
- [4] LIU J, FENG Y B, QIU T. Synthesis, Characterization, and Microwave Absorption Properties of Fe-40 wt\%Ni Alloy Prepared by Mechanical Alloying and Annealing[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(23): 3071-3076.
- [5] ZHAO H, ZHU Z H, XIONG C, et al. The Effect of Transverse Magnetic Field Treatment on Wave- Absorbing Properties of FeNi Alloy Powders[J]. Journal of Magnetism and Magnetic Materials, 2017, 422: 402-406.
- [6] LI Q F, YAN S Q, WANG X, et al. Enhanced Microwave Absorption of Flake-Oriented Sendust Sheets by Tape Casting[J]. IEEE Transactions on Magnetics, 2015, 51(11): 2445928.
- [7] GUAN Z J, WANG Z Q, JIANG J T, et al. Flaky FeSi Particles with Tunable Size, Morphology and Microstructure Developing for High-Efficiency and Broadband Absorbing Materials[J]. Journal of Magnetism and Magnetic Materials, 2021, 527: 167800.
- [8] LIU C, YUAN Y, JIANG J T, et al. Microwave Absorption Properties of FeSi Flaky Particles Prepared via a Ball-Milling Process[J]. Journal of Magnetism and Magnetic Materials, 2015, 395: 152-158.
- [9] KIM M S, MIN E H, KOH J G. Comparison of the Effects of Particle Shape on Thin FeSiCr Electromagnetic Wave Absorber[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(6): 581-585.
- [10] ZOU B F, ZHOU T D, HU J. Effect of Amorphous Evolution on Structure and Absorption Properties of FeSiCr Alloy Powders[J]. Journal of Magnetism and Magnetic Materials, 2013, 335: 17-20.
- [11] WANG Z J, JIANG H T. Core-Shell FeNi@SiO2 Com-

posite with Enhanced Microwave Absorption Performance[J]. Journal of Alloys and Compounds, 2022, 923(1): 166468.

- [12] WANG G W, ZHANG J M, ZHENG Z Y, et al. Comparative Study on the High Frequency Performances of the Easy-Plane FeNi@SiO₂ Powder Soft Magnetic Composite[J]. Current Applied Physics, 2022, 41: 73-80.
- [13] WANG C X, JIA Z R, HE S Q, etal. Metal-Organic Framework-Derived CoSn/NC Nanocubes as Absorbers for Electromagnetic Wave Attenuation[J]. Journal of Materials Science & Technology, 2022, 108(13): 236-243.
- [14] SHI C C, SU Y C, LUO Z B, et al. Microwave Absorption Properties of Spheres-Assembled Flake-Like FeNi₃
 Particles Prepared by Electrodeposition[J]. Journal of Alloys and Compounds, 2020, 859: 157835.
- [15] CHEN M, FAN R H, GAO M, et al. Negative Permittivity Behavior in Fe₅₀Ni50/Al₂O₃ Magnetic Composite near Percolation Threshold[J]. Journal of Magnetism and Magnetic Materials, 2015, 381: 105-108.
- [16] HE J, DENG L W, LIU S, et al. Enhanced Microwave Absorption Properties of Fe₃O₄-Modified Flaky Fe-SiAl[J]. Journal of Magnetism and Magnetic Materials, 2017, 444: 49-53.
- [17] GUO X L, YAO Z J, LIN H Y, et al. Epoxy Resin Addition on the Microstructure, Thermal Stability and Microwave Absorption Properties of Core-Shell Carbonyl Iron@epoxy Composites[J]. Journal of Magnetism and Magnetic Materials, 2019, 485: 244-250.
- [18] CUI Z M, MA G Q, WANG M Q, et al. Enhanced Microwave Absorption for High Filler Content Composite Molded from Polymer Coated Flaky Carbonyl Irons Modified by Silane Coupling Agents[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2023, 38(1): 42-51.
- [19] 马国庆,陈亮,崔正明,等. 溶解乳化法制备 SBS 包 覆 FeSiAl 片状吸收剂的微波电磁性能[J]. 材料工程, 2022, 50(2): 111-117.
 MA G Q, CHEN L, CUI Z M, et al. Microwave Electromagnetic Properties of SBS Coated with FeSiAl Sheet Absorbent Prepared by Solution-emulsification Process[J]. Journal of Materials Engineering, 2022, 50(2): 111-117.
- [20] CALVO B, CEPEDA E A. Solubilities of Stearic Acid in Organic Solvents and in Azeotropic Solvent Mixtures[J]. Journal of Chemical & Engineering Data, 2008,

53(3): 628-633.

- [21] HOERRCW, SEDGWICKRS, RALSTON A W. The Solubilities of the Normal Saturated Fatty Acids[J]. The Journal of Organic Chemistry, 1946, 11(5): 603-609.
- [22] SAVENKO V I, KLYUEV V A, MALKIN A I. Granulometry of Metal Micropowders Treated in a Planetary-Type Ball Mill[J]. Colloid Journal, 2022, 84(1): 81-92.
- [23] SURYANARAYANA C. Mechanical Alloying and Milling [Review[J]. Progress in Materials Science, 2001, 46(1/2): 1-184.
- [24] SIMI/VC R, KALIN M. Adsorption Mechanisms for Fatty Acids on DLC and Steel Studied by AFM and Tribological Experiments[J]. Applied Surface Science, 2013, 283: 460-470.
- [25] WANG F, LONG C, WU T L, et al. Enhancement of Low-Frequency Magnetic Permeability and Absorption by Texturing Flaky Carbonyl Iron Particles[J]. JournalofAlloys and Compounds, 2020, 823(8): 153827.

- [26] CHAWAKE N, RAMA S, VARANASI B, et al. Evolution of Morphology and Texture during High Energy Ball Milling of Ni and Ni-5wt.%Cu Powders[J]. Mater Charact, 2016, 120: 90-96.
- [27] WANG Y Q, WANG H G, YE J H, et al. Magnetic CoFe alloy@C Nanocomposites Derived from ZnCo-MOF for Electromagnetic Wave AbsorptionChemical Engineering Journal, 2020, 383: 123096.
- [28] CUI C, GUO R, REN E H, et al. MXene-Based rGO/Nb2CTx/Fe₃O₄ Composite for High Absorption of Electromagnetic Wave[J]. Chemical Engineering Journal, 2020, 405(3): 126626.
- [29] NEELAKANTA P S. Complex Permittivity of a Conductor-Loaded Dielectric[J]. Journal of Physics Condensed Matter, 1990, 2(22): 4935-4947.
- [30] MARTINEZ V, STOLAR T, KARADENIZ B, et al. Advancing Mechanochemical Synthesis by Combining Milling with Different Energy Sources[J]. Nature Reviews Chemistry, 2023, 7(1): 51-65.