云杉碳点的制备及其在甲醛检测中的应用

李影,刘凯,胡妙言,徐丽,张榅清,徐长妍

(南京林业大学 材料科学与工程学院,南京 210037)

摘要:目的 为云杉木包装箱废弃物的二次利用提供新的途径。方法 将废弃的云杉木包装作为碳源,采 用高温高压水热法,在180°C下反应10h,制得云杉碳点(Spruce carbon dots,S-CDs),并将其应用于 甲醛检测。通过透射电镜(HRTEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)等仪器对S-CDs 的形貌、晶型结构、化学组成和光学性能进行表征。结果 S-CDs 呈类球状,平均粒径为 3.49 nm,量 子产率为 0.45%,其表面含有 C-O、C=O、N-H等基团,水溶性较好,在 365 nm 紫外灯下会发出蓝色 的荧光。采用比值荧光法将 S-CDs 应用于甲醛检测,S-CDs 对甲醛表现出较好的响应性,在甲醛浓度为 0~1 mmol/L 内,其溶液的荧光强度 F_{427}/F_{490} 与甲醛浓度之间呈现良好的线性关系(R^2 =0.968),检出极 限值(LOD)达到 0.045 mmol/L。结论 以云杉废弃木包装为单一碳源,成功地制备出可应用于甲醛检测的 S-CDs,实现了废弃云杉木包装的二次利用和功能化。

关键词:废弃云杉木包装;水热法;碳点;甲醛检测

中图分类号: TQ127.1 文献标识码: A 文章编号: 1001-3563(2022)17-0011-09 DOI: 10.19554/j.cnki.1001-3563.2022.17.002

Preparation of Carbon Dots from Spruce Wood and Its Application in Detection of Formaldehyde

LI Ying, LIU Kai, HU Miao-yan, XU Li, ZHANG Wen-qing, XU Chang-yan

(College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

ABSTRACT: The work aims to provide a new way for the secondary utilization of waste spruce wood packaging. Waste spruce wood packaging was used as carbon source. Then, spruce carbon dots (S-CDs) were derived from carbon source by the hydrothermal method (180 °C, 10 h) and applied to detection of formaldehyde. High-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) X-ray diffraction (XRD) and other instruments were used to investigate the morphology, crystallinity, chemical composition and optical properties of the S-CDs. In brief, S-CDs were spheroid with an average particle size of 3.49 nm, and the quantum yield was 0.45%. The surface contained C-O, C=O, N-H and other groups, which could be evenly dispersed in water. S-CDs were fluorescent blue excited at 365 nm. In addition, ratio fluorescence method was used to apply S-CDs in detection of formaldehyde. S-CDs showed a good response to formaldehyde. In the range of 0-1 mmol/L, the values of F_{427}/F_{490} showed a good linear relationship with formaldehyde concentration (R^2 =0.968). The detection limit (LOD) was 0.045 mmol/L. Waste spruce wood packaging can be used as a single carbon source to prepare S-CDs which can be used for formaldehyde detection, thus realizing the secondary utilization and functionalization of waste spruce wood packaging.

收稿日期: 2022-01-11

基金项目:国家自然科学基金 (32071703);教育部青年人文社会科学研究基金 (19YJC760132)

作者简介:李影(1997—),男,硕士,主要研究方向为生物质碳量子点的制备。

通信作者:徐长妍(1967-),女,博士,教授,主要研究方向为生物质基碳量子点的绿色制备及其应用。

KEY WORDS: waste spruce wood packaging; hydrothermal method; carbon dots; detection of formaldehyde

目前,我国物流的飞速发展为包装行业带来了机 遇^[1]。包装作为物流中的一个重要环节,其需求量随 着物流规模的增长而增加。随着包装需求量的增加, 包装废弃物的量也随之增加。云杉具有材质轻、结构 细致均匀和易加工等优点,常用于木质包装的制造, 如木包装箱和木托盘。这类木质包装在回收后的处 理方法一般为再生和焚烧,或者采用其他附加值较 低的方法^[2],这不符合当前绿色环保的理念,如何进 行云杉木材包装废弃物的二次利用十分关键。

甲醛是一种有害物质,其主要来源为室内家具等 装饰材料。由于甲醛具有良好的水溶性,因此甲醛也 会存在于饮用水、工业废水和雨水中。由于长期接触 甲醛会对人体的中枢神经系统、免疫系统和呼吸系统 造成很大的伤害,因此对于甲醛的检测显得十分必 要。在众多甲醛的检测方法中,纳米荧光探针因其响 应快、检测方便、成本低等优点成为众多研究者的研 究方向, 它包括碳点纳米荧光探针。碳点是一种直径 小于 10 nm 的球状新型碳纳米材料^[3]。碳点具有良好 的水溶性^[4]、良好的生物相容性^[5]、可调谐的荧光^[6] 及原料选择广泛等优点,迅速成为研究热点。碳点的 原料选择较丰富,包括有机小分子^[7]、生物质原料^[8] 等, 生物质原料又因价格便宜, 逐渐成为科研工作者 的选择。洪碧云等^[9]以碱木质素为原料,以聚乙烯亚 胺为氮源,制备了蓝色荧光碳点,并将其应用于 pH 值的检测。Zhao 等^[10]以松木为碳源,制备了可应用 于检测 Fe³⁺的碳点。Xu 等^[11]以橡碗为原料,制备了 2种碳点,并将其与聚乙烯醇复合制成可防紫外的复 合薄膜。此外,碳点常被应用于荧光探针领域,包括 甲醛检测。Li 等^[12]报道了一种由氧化还原引发的碳 点,并将其应用于甲醛的检测。Liu等[13]将木质素基 碳点与透明木材复合,制备了可检测甲醛的建筑材 料。Liu 等^[14]、Qu 等^[15]和 Wang 等^[16]均将制备的碳 点应用于生物体内甲醛的检测。综上可知,虽然生物 质碳点在甲醛检测上的应用已有一些报道,但仍处于 起步阶段, 且都存在一个问题: 必须在碳点中添加 掺杂剂,进行功能化处理,才能应用于甲醛检测, 往往这些掺杂剂具有一定的毒性,且价格昂贵。根 据 Liu 等^[17]的研究可知,在碳点中引入氨基可实现 甲醛的检测。在云杉木材中除了含有大量的 C、H、 O外,还含有质量分数为0.1%~1%的N元素,因此 若可将云杉木材中极少量的N元素成功地以氨基的 形式引入碳点,则可将云杉木质基碳点应用于甲醛 的检测,且无需添加掺杂剂,在真正意义上实现绿 色环保。为此,文中以废弃云杉木包装为碳源,采 用高温高压水热法制备云杉木基碳点,并将其应用 于甲醛检测。

1 实验

1.1 材料和仪器设备

主要材料:废弃云杉木包装,靖江国林木业有限公司;去离子水,实验室自制;福尔马林溶液(14.4 mol/L),分析纯,南京化学试剂股份有限公司;不同浓度的甲醛溶液,由福尔马林溶液配制。

主要仪器设备:电热鼓风干燥箱,101-1A/B, 秋佐科技;多功能粉碎机,XT-500A,永康红太阳机 电有限公司;三用紫外分析仪,ZF-1,杭州奇威仪 器有限公司;透射电子显微镜,JEM-2100,日本电 子株式会社;紫外可见分光光度计,U-3900,日本 株式会社那珂事业所;茨光分光光度计,F-2700,日 本株式会社那珂事业所;X射线衍射仪,XRDUltima IV,日本株式会社理学;原子力显微镜,Dimesion Edge,德国布鲁克公司;X射线光电子能谱仪, AXIS-Ultra DLD,日本Shimadzu公司;激光拉曼光 谱仪,DXR532,赛默飞世尔科技公司;冷冻干燥箱, Xianou-12D,南京先欧仪器制造有限公司;电子天 平,BS 223 S,北京赛多利斯仪器系统有限公司;傅 里叶红外光谱仪,VERTEX 80 V,德国 Bruker 公司。

1.2 废弃云杉木碳点的制备

首先将从工厂回收的云杉木包装箱进行拆解、 裁切、清洗和粉碎, 接着利用 60 目和 80 目分子筛 筛选得到 60~80 目的云杉木粉,最后将其放入 60 ℃ 烘箱中烘至绝干。实验采用水热法制备 S-CDs,将 0.4 g 烘至绝干的云杉木粉和 60 mL 去离子水置于 150 mL 烧杯中,将烧杯置于 60 ℃水浴锅中搅拌,待 木粉与水混合均匀后,将混合液倒入100 mL的聚四 氟乙烯反应釜中,接着将反应釜放入 180 ℃烘箱中 反应 10 h。待反应结束后,将反应釜取出,并自然 冷却至室温,将反应后的混合液倒出,并用孔径为 0.22 μm 的微孔滤膜过滤,得到 S-CDs 混合溶液。混 合溶液需要进一步地进行纯化处理,具体步骤:将混 合溶液放入离心机中以1000 r/min 离心10 min,再将 其放入1000 u 的透析袋中透析 48 h, 即得到纯化后 的 S-CDs 溶液,质量浓度为 500 mg/L。将 S-CDs 溶 液在冷冻干燥机中冻干 48 h,得到 S-CDs 固体粉末, 产率为 0.45%。

1.3 甲醛检测

采用 S-CDs 检测甲醛的方案见表 1。具体操作步骤:利用福尔马林溶液配制不同浓度的甲醛溶液备用; 量取 0.5 mL 纯化后的 S-CDs 溶液;量取 1.5 mL 步骤 1 中配制的不同浓度的甲醛溶液,并加入步骤 2 配制的 S-CDs 溶液中;向混合溶液中加入去离子水至 10 mL, 得到用于后续表征用的 S-CDs/甲醛混合溶液。

表 1 S-CDs 检测甲醛的方案 Tab.1 Scheme of FA detection with S-CDs

SCDs 溶液体积/ mL	甲醛溶液体积/ mL	甲醛浓度/ (mmol·L ⁻¹)	水的体积/ mL
0.5	0	0	9.5
0.5	1.5	0.02	8
0.5	1.5	0.2	8
0.5	1.5	0.6	8
0.5	1.5	1	8
0.5	1.5	2	8
0.5	1.5	3	8
0.5	1.5	4	8
0.5 1.5		5	8

1.4 样品表征

通过高分辨率透射电子显微镜(HRTEM)和原 子力显微镜(AFM)表征 S-CDs 的粒径,以及它在 水中的分散情况。通过 X 射线衍射仪(XRD)和激 光拉曼光谱仪(Raman)表征 S-CDs 的晶型结构。 通过 X 射线电子能谱仪(XPS)表征木粉和 S-CDs 的化学组成及结构。通过傅里叶红外光谱仪(FT-IR) 对 S-CDs 的表面官能团进行表征,扫描范围为 500~ 4 000 cm⁻¹。采用三用紫外分析仪分析 S-CDs 在 365 nm 紫外激发下的荧光颜色。通过荧光分光光度计(FL) 和紫外分光光度计(Uv-vis)进一步分析 S-CDs 的 光学性能。荧光分光光度计的具体参数:激发狭缝 宽度为 10 nm、发射狭缝宽度为 2.5 nm、扫描速度 为 300 nm/min。紫外分光光度计的具体参数:扫描 速率为 300 nm/min,扫描范围为 200~800 nm。S-CDs 的荧光量子产率(Q)的计算方法参考文献[18],如 式(1)所示。将吸光度小于 0.05 的硫酸奎宁(激发 波长为 360 nm,荧光量子产率为 54%)作为荧光参 比物质,将激发波长设置为 360 nm。

$$Q_{\rm X} = \frac{Q_{\rm R} \cdot S_{\rm X} \cdot A_{\rm R} \cdot \eta_{\rm X}^2}{S_{\rm R} \cdot A_{\rm X} \cdot \eta_{\rm R}^2} \tag{1}$$

式中: 下标 X 和 R 分别表示 S-CDs 和参比物; *Q* 为荧光量子产率; *S* 为在 360 nm 紫外光激发下的 发射光谱积分面积; *A* 为在 360 nm 紫外光激发下的 吸光度; η 为溶剂的折射率。

采用比值荧光法测定 S-CDs 应用于甲醛检测的 灵敏度,其方法参考文献[15]。通过荧光分光光度计 测试 S-CDs/甲醛混合溶液在 365 nm 激发下的荧光发 射光谱,并记录 S-CDs/甲醛混合溶液在 427 nm 和 490 nm 处的荧光发射强度,分别记作 F_{427} 和 F_{490} 。通 过计算 F_{427} 与 F_{490} 的比值,得到 S-CDs 应用于甲醛 检测的灵敏度。利用式(2)计算得到 S-CDs 检测甲 醛的检测极限值(Limit of detection, L)^[16]。

$L = 3\sigma / s$		(2)
式中・σ为S-	CDs/甲醛混合溶液空白样荧光强度	<u></u> 宇的

太中: σ 为 S=CDS中世祝告俗被空日样灭九强度的标准偏差; s 为 F_{427}/F_{490} 与甲醛浓度的拟合曲线的斜率。

2 结果与分析

2.1 S-CDs 的光学性能

如图 1a 所示, S-CDs 溶液在日光下呈现淡黄色 且清澈透明,在 365 nm 紫外灯的照射下发出明亮的 蓝色荧光。为了进一步了解 S-CDs 的光学性能,采 用荧光分光光度计和紫外分光光度计对 S-CDs 进行 了表征。S-CDs 在不同激发波长下的发射光谱见图 1b,可知 S-CDs 的最佳激发波长为 365 nm,最佳发 射波长为 456 nm。此外,从图 1b 中还可看出,S-CDs 的发射峰较宽,且最佳发射波长会随着激发波长的变 化而改变,因而表现出轻微的激发波长依赖性,这 2 个 特性为后续的甲醛检测提供了可能。S-CDs 在 360 nm 激发下的吸收光谱图见图 1c,可见 S-CDs 的吸收光谱

有 2 个明显的峰: 224 nm 和 280 nm; 在 224 nm 处的 峰是由 C=C 的 π - π *电子跃迁引起的,而在 280 nm 处的峰则是由 C=O 的 n- π *电子跃迁引起的。这说 明 S-CDs 的化学结构中存在 C=C 和 C=O。此外, 根据式(1)计算得出 S-CDs 的荧光量子产率为 8.03%。

2.2 S-CDs 的形貌和粒径

通过 HRTEM 和 AFM 表征 S-CDs 的形貌和粒径,由图 2a 可以看出,S-CDs 呈现类球状,且分散均匀。图 2b 清晰地展示了单颗 S-CDs 的形貌,可以看出 S-CDs 的一半具有明显的晶格条纹,且晶格间距为 0.21 nm,这对应于石墨的(100)晶面^[19],说明 S-CDs 具有一定的石墨化结构(sp²结构);S-CDs 的另一半不具有明显的晶格条纹,表明 S-CDs 还具有一定的无定形结构。如图 2c 所示,S-CDs 的平均粒径为 3.49 nm,粒径分布为 1.92~4.94 nm。S-CDs 的 AFM 图见图 2d,同样可以看出,S-CDs 呈类球状 且分散均匀,这与 HRTEM 的结果一致。

通过 XRD 和 Raman 表征 S-CDs 的结晶性,如图 3 所示。由图 3a 可知,在 19°~21°之间有一个较宽的 XRD 峰。19°~21°对应石墨(100)晶面^[19],表明 S-CDs

结构中存在一定的 sp²结构,这与透射电镜的分析结果 一致。然而,在 19°~21°处的峰并不尖锐,说明 S-CDs 的结晶性并不是很好,即 S-CDs 的结构中存在一定的无 定形 sp³结构^[5],这一结果与透射电镜的分析结果相符。

此外, 拉曼光谱(图 3b)进一步表明了 S-CDs 的 结构。如图 3b 所示, 在 1 327 cm⁻¹ 附近的峰是 D 带, 这是由无定形 sp³结构引起的^[20];在 1 636 cm⁻¹ 附近的 峰是 G 带, 表示石墨化结构, 这是由 sp²结构引起的^[21]。 D 带的强度明显高于 G 带, 这表明在 S-CDs 的结构中, 无定形 sp³结构占据主导地位。

通过以上分析可知, S-CDs 是一种由无定形 sp³结构和石墨化 sp²结构组成的类球状碳点。

2.3 S-CDs 的元素组成分析

采用 XPS 表征分析 S-CDs 的元素组成。如图 4a 和表 2 所示,在 285、399、532 eV 处有 3 个峰,分 别表示 S-CDs 的 C 1s、N 1s 和 O 1s。这表明 S-CDs 由 C、N、O 等 3 种元素组成,并且 C 元素的质量分 数为 74.54%,O 元素的质量分数为 24.49%,N 元素 的质量分数为 0.97%。由表 2 可知,云杉木粉中 N 元 素含量远低于 C 元素和 O 元素的含量,仅有 0.42%。 对比 S-CDs 和云杉木粉中的 N 元素含量可以发现,

c S-CDs的粒径分布 d S-CDs的原子力显微镜图(圆圈为S-CDs) 图 2 S-CDs 的形貌和粒径表征结果 Fig.2 Characterization result of morphology and particle size of S-CDs

1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 粒径/nm

图 4 S-CDs 的 XPS 结果 Fig.4 XPS results of S-CDs

	wo	ood nowe	der		
Tab.2 Ele	mental aı	nalysis o	f S-CDs	and	spruce
表 2	S-CDs	和云杉オ	下粉的元	素分	·析

样品 -		质量分数/%	
	C 1s	O 1s	N 1s
S-CDs	74.54	24.49	0.97
云杉木粉	68.56	31.01	0.42

S-CDs中的N元素含量明显高于云杉木粉中的N元 素含量。这说明通过水热法可以将云杉木粉中的N元 示素转移至所制备的S-CDs中,这也为S-CDs成功 应用于甲醛检测提供了可能。图4b-d具体展现了 S-CDs各原子之间的化学键和官能团。从S-CDs的 C1s图谱(图4b)可以看出,在284.6、286.2、288.8 eV 处有3个峰,分别对应C=C/C--C、C--O/C--N、 C=O^[19]。其中, C=C/C--C(284.6 eV)的峰明显高 干其他 2 个峰, 说明 S-CDs 中的 C=C/C--C 占据主 导,即 S-CDs 存在明显的碳骨架。S-CDs 的 N 1s 图谱见图 4c, 在 399.8、401.2 eV 处有 2 个峰, 分 别对应 N—H 和 C—N^[22]。这表示 S-CDs 的 N 元素 以 N—H 和 C—N 的形式存在,并且 N—H 的含量 明显高于 C-N 的含量。其中, N-H 的存在进一步 提升了 S-CDs 应用于甲醛检测的可能性。S-CDs 中 O 元素的 XPS 图谱如图 4d 所示, O 1s 图谱存在 2个明显的峰,分别位于 531.8 eV(C=O)^[23]和 533.2 eV (C-O)^[19], 说明 S-CDs 中 O 元素主要以 C=O 和 C—O 的形式存在,并且 C=O 的含量高于 C—O 的含量。通过以上有关 XPS 的分析可知, S-CDs 主要由 C=C/C-C、C-O、C=O、C-N 和 N-H 组成,并且 C=C 和 C-C 的含量较高,即 S-CDs 以 C 为骨架。此外, N—H 的存在为后续的甲醛检 测提供了基础。

通过 FT-IR 进一步分析了 S-CDs 的表面官能团。 由图 5 可知,在 3 319 cm⁻¹ 处的吸收峰由 O—H/N—H 的伸缩振动引起,在 2 939 cm⁻¹和 2 880 cm⁻¹ 处的吸 收峰分别表示 C—H 的不对称伸缩振动和对称伸缩 振动^[7]。在 1 768 cm⁻¹ 处的吸收峰对应于 C=O^[18], 在 1 594 cm⁻¹和 1 518 cm⁻¹ 处的吸收峰分别来源于半纤 维素中的 C=C 和木质素中的 C=C^[18]。在 1 412 cm⁻¹ 和 1 032 cm⁻¹ 处的吸收峰归属于 C-N 和 C-O^[24]。综 上可知,FT-IR 的分析结果与 XPS 的分析结果相一 致,即 S-CDs 含有 C=C、C-C、C-O、C=O、C-N、 N-H 等。

2.4 S-CDs 的合成机理分析

为了分析 S-CDs 的合成机理,除了对 S-CDs 进行 FT-IR 表征,还对云杉木粉和反应残渣进行了 FT-IR 表征分析。由图 5 可以看出,云杉木粉和残渣 都具有 O-H/N-H(3 319 cm⁻¹)、C-H(2 880 cm⁻¹)、C=C(1 594、1 518 cm⁻¹)、C-N(1 412 cm⁻¹)、C-O(1 032 cm⁻¹)等,这说明残渣与木粉的结构相似,即木粉经过水热反应后保留了一些基本的结构。值得注意的是,云杉木粉和 S-CDs 的红外光谱在 1 768 cm⁻¹处都有一个 C=O 的吸收峰,而残渣的红外光谱在 1 768 cm⁻¹处不存在吸收峰,另外在 1 768 cm⁻¹处

的 C=O 是木材中半纤维素的特征峰,故推测木粉中 的半纤维素经历了水热反应后彻底降解,而纤维素和 木质素则并未完全降解。

图 5 S-CDs、云杉木粉和残渣的 FT-IR 图谱 Fig.5 FT-IR spectra of S-CDs, spruce powder and residue

根据以上分析,再结合已报道的文献,推测得出 了 S-CDs 的合成机理。S-CDs 的合成大致可分为 3 步:随着水热反应温度的升高(逐渐升至 180 ℃), 云杉木粉中的半纤维素率先降解成小分子,纤维素和 木质素则只有小部分降解,随着时间的增加,半纤维 素完全降解;由半纤维素降解形成的小分子在水热反 应的高温、高压下开始重新脱水聚合,形成各种聚合 物;随着反应时间的增加,这些聚合物逐渐被碳化, 形成碳骨架,最终形成具有荧光结构的 S-CDs。

2.5 不同木质基碳点的对比

除了利用云杉作为制备碳源的碳点,还有利用其 他种类木材制备碳点的相关研究。采用水热法,以木 材为碳源制备碳点的基本数据见表3。通过对比发现, 在不添加助剂的情况下,以云杉为碳源制备的碳点的 荧光量子产率明显低于以辐射松、松木、杨木、落叶 松为碳源制备的碳点的荧光量子产率。此外,在不同 木材制备的碳点中,云杉碳点的最佳发射波长相对最 长。这表明相较于其他种类的木材,云杉更适合采用 水热法制备更长波长的碳点。

Tab.3 Comparison of different wood-based CDs					
碳源	制备方法	助剂	荧光量子产率/%	最佳发射波长/nm	参考文献
云杉	水热法		0.45	456	文中
辐射松	水热法		1.60	423	[25]
松木	水热法		4.69	447	[10]
杨木	水热法	柠檬酸		400	[26]
杨木	水热法	柠檬酸、乙二胺	47.4	430	[27]
落叶松	水热法			440	[28]

表 3 不同木质基碳点对比 Tab.3 Comparison of different wood-based CDs

2.6 S-CDs 应用于甲醛检测

通过以上的分析可知, S-CDs 含有一定量的—NH₂ 基团,这使得它有可能会与甲醛发生反应。为此,这里将 0.5 mL 的福尔马林溶液(甲醛溶液, FA)添加到 0.5 mL 的 S-CDs 溶液中,并在 365 nm 紫外分析仪中观察甲醛 添加前后 S-CDs 荧光的变化情况,结果如图 6 所示。 由图 6 可以看出,S-CDs 溶液在 365 nm 紫外灯下发 出蓝色荧光,而在添加甲醛溶液后,其蓝色荧光的强 度得到非常明显的提升。这证明甲醛可以增强 S-CDs 在 365 nm 紫外光激发下的荧光强度,因此这里制定了 甲醛检测方案,表征 S-CDs 对甲醛的响应性。

按照表1的方案,将不同浓度的甲醛(0.02、0.2、0.6、1、2、3、4、5 mmol/L)添加到 S-CDs 溶液中, 在反应 10 s 后,利用荧光分光光度计对 S-CDs/FA 混合 溶液进行表征,表征结果如图 7 所示。如图 7a 所示, 在 365 nm 紫外光激发下,不同浓度的甲醛对 S-CDs 溶液的荧光强度有着不同程度的增强。随着甲醛浓度的 增加,S-CDs 的荧光强度逐渐增加。由图 7b 可知, 在 0~1 mmol/L 内, S-CDs 的荧光强度显著增强;在 1~5 mmol/L 内, S-CDs 的荧光强度缓慢增加。如图 7c 所示,在 0~1 mmol/L 内, F_{427}/F_{490} 与甲醛浓度之间有 一个良好的线性关系,拟合后的直线方程: $y=0.088x+1.417, R^2=0.968; 在 1~5 mmol/L 内, F_{427}/F_{490}$

图 6 S-CDs 和 S-CDs+FA 在 365 nm 紫外灯下的照片 Fig.6 Images of S-CDs and S-CDs+FA under the 365 nm UV light

图 7 S-CDs 甲醛检测性能结果 Fig.7 Formaldehyde detection performance of S-CDs

与甲醛浓度之间的关系则可以用方程 $y=0.003x^2-0.006x+1.507$ 表示, $R^2 = 0.993$ 。通过式(2)计算得 到 S-CDs 检测甲醛的检测限值为 0.045 mmol/L,这 远低于《污水综合排放标准》^[29]中规定的甲醛最高允 许排放浓度(0.17 mmol/L),同时也非常接近于中国 《生活饮用水标准》^[30]规定的饮用水中甲醛含量不 能超过的值(0.030 mmol/L)。由此可见,S-CDs 有 望作为甲醛荧光探针应用于检测污水和饮用水中的 甲醛。

为了探究 S-CDs检测甲醛的机理,这里对 S-CDs 溶液和 S-CDs/FA 溶液进行了紫外可见光光谱分析。 如图 8 所示, S-CDs 溶液和 S-CDs/FA 溶液的紫外可 见光吸收光谱相似,均在 224 nm 和 280 nm 处有 2 个 吸收峰,分别对应于 C=C 的 π-π*电子跃迁和 C=O 的 n-π*电子跃迁。这表明将甲醛加入 S-CDs 中后, 并没有产生新的荧光物质。结合已有文献^[31],可以推 测引入的甲醛与 S-CDs 表面的—NH₂ 结合,破坏了 S-CDs 与水之间的氢键,使得 S-CDs 在水中更加分 散,从而导致 S-CDs 的荧光强度增加。

图 8 S-CDs 和 S-CDs/FA 在 365 nm 下的紫外 可见光吸收光谱 Fig.8 UV-vis absorption spectra of S-CDs and S-CDs/FA excited by 365 nm

3 结语

以废弃的云杉木包装为原料,采用水热法,在 180 ℃下反应 10 h,制备得到荧光量子产率为 0.45% 的 S-CDs。S-CDs 呈类球状,以 C 为骨架,且同时 具有 sp²结构和无定形 sp³结构,平均粒径为 3.49 nm, 表面含有氨基等官能团,水溶性较好,在 365 nm激 发下发出蓝色荧光。此外,S-CDs 表现出良好的甲醛 响应性,且 LOD 值达到 0.045 mmol/L,可作为荧光 探针应用于污水和生活饮用水中甲醛的检测。S-CDs 的制备和应用为废弃云杉木包装的处理提供了一种 有效且有价值的途径。

参考文献:

- 吴婷. 区块链赋能智慧物流平台化发展的挑战与应对 策略[J]. 商业经济研究, 2022(1): 105-108.
 WU Ting. Blockchain Empowers the Challenges and Countermeasures of the Development of Intelligent Logistics Platform[J]. Journal of Commercial Economics, 2022(1): 105-108.
- [2] 彭国勋,许晓光.包装废弃物的回收[J].包装工程, 2005, 26(5): 10-13.
 PENG Guo-xun, XU Xiao-guang. Recycling of Packaging Waste[J]. Packaging Engineering, 2005, 26(5): 10-13.
- [3] 徐冀健,曲丹,安丽,等. 红光/近红外发射碳点制 备、光学调控与应用[J]. 发光学报, 2021, 42(12): 1837-1851.
 XU Ji-jian, QU Dan, AN Li, et al. Preparation, Optical Control and Application of Red/Near Infrared Emitting Carbon Dots[J]. Chinese Journal of Luminescence, 2021, 42(12): 1837-1851.
- [4] SHI Yi-xin, LIU Xin, WANG Meng, et al. Synthesis of N-Doped Carbon Quantum Dots from Bio-Waste Lignin for Selective Irons Detection and Cellular Imaging[J]. International Journal of Biological Macromolecules, 2019, 128: 537-545.
- [5] CHANG Qian-yang, ZHOU Xian-ju, XIANG Guo-tao, et al. Full Color Fluorescent Carbon Quantum Dots Synthesized from Triammonium Citrate for Cell Imaging and White LEDs[J]. Dyes and Pigments, 2021, 193: 1-11.
- [6] NGUYEN H A, SRIVASTAVA I, PAN D, et al. Unraveling the Fluorescence Mechanism of Carbon Dots with Sub-Single-Particle Resolution[J]. ACS Nano, 2020, 14(5): 6127-6137.
- [7] ZHENG YUXIN, ARKIN K, HAO JIAWEI, et al. Multicolor Carbon Dots Prepared by Single-Factor Control of Graphitization and Surface Oxidation for High-Quality White Light-Emitting Diodes[J]. Advanced Optical Materials, 2021, 9(19): 1-11.
- [8] ZHU Ling-li, SHEN De-kui, LIU Qian, et al. Sustainable Synthesis of Bright Green Fluorescent Carbon Quantum Dots from Lignin for Highly Sensitive Detection of Fe³⁺ Ions[J]. Applied Surface Science, 2021, 565: 150526.
- [9] 洪碧云,唐丽荣,陈伟香,等.碱木质素/聚乙烯亚胺碳点的制备及其对 pH 敏感性[J]. 化工进展, 2019, 38(4): 1970-1977.
 HONG Bi-yun, TANG Li-rong, CHEN Wei-xiang, et al. Preparation of Alkali Lignin/Polyethyleneimine Carbon Dots and Their pH Sensitivity[J]. Chemical Industry and

Engineering Progress, 2019, 38(4): 1970-1977.

- [10] ZHAO Si-yu, SONG Xue-ping, CHAI Xin-yu, et al. Green Production of Fluorescent Carbon Quantum Dots Based on Pine Wood and Its Application in the Detection of Fe³⁺[J]. Journal of Cleaner Production, 2020, 263: 121561.
- [11] XU Nan, GAO Shi-yu, XU Chang-yan, et al. Carbon Quantum Dots Derived from Waste Acorn Cups and Its Application as an Ultraviolet Absorbent for Polyvinyl Alcohol Film[J]. Applied Surface Science, 2021, 556: 149774.
- [12] LI Hui-jun, SUN Xiong, XUE Feng-feng, et al. Redox Induced Fluorescence On-Off Switching Based on Nitrogen Enriched Graphene Quantum Dots for Formaldehyde Detection and Bioimaging[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1708-1716.
- [13] LIU Yu-shan, YANG Hai-yue, MA Chun-hui, et al. Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36628-36638.
- [14] LIU Hai-fang, SUN Yuan-qiang, LI Zhao-hui, et al. Lysosome-Targeted Carbon Dots for Ratiometric Imaging of Formaldehyde in Living Cells[J]. Nanoscale, 2019, 11(17): 8458-8463.
- [15] QU Jian, ZHANG Xin, LIU Yi-fan, et al. N, P-Co-Doped Carbon Dots as a Dual-Mode Colorimetric/ Ratiometric Fluorescent Sensor for Formaldehyde and Cell Imaging via an Aminal Reaction-Induced Aggregation Process[J]. Microchimica Acta, 2020, 187(6): 355.
- [16] WANG Hong, WEI Jing, ZHANG Chong-hua, et al. Red Carbon Dots as Label-Free Two-Photon Fluorescent Nanoprobes for Imaging of Formaldehyde in Living Cells and Zebrafishes[J]. Chinese Chemical Letters, 2020, 31(3): 759-763.
- [17] LIU Xiang, LI Ning, LI Meng, et al. Recent Progress in Fluorescent Probes for Detection of Carbonyl Species: Formaldehyde, Carbon Monoxide and Phosgene[J]. Coordination Chemistry Reviews, 2020, 404: 213109.
- [18] GAO Shi-yu, WANG Xi, XU Nan, et al. From Coconut Petiole Residues to Fluorescent Carbon Dots via a Green Hydrothermal Method for Fe³⁺ Detection[J]. Cellulose, 2021, 28(3): 1647-1661.
- [19] ZHAO Ying-nan, OU Cai-ling, YU Jing-kun, et al. Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dots from a Single Unconjugated Glucose for Engineering White Light-Emitting Diodes with a High Color Rendering Index[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 30098-30105.
- [20] ATCHUDAN R, EDISON T N J I, PERUMAL S, et al. Hydrophilic Nitrogen-Doped Carbon Dots from

Biowaste Using Dwarf Banana Peel for Environmental and Biological Applications[J]. Fuel, 2020, 275: 117821.

- [21] ATCHUDAN R, JEBAKUMAR IMMANUEL EDISON T N, PERUMAL S, et al. Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for in Vitro/in Vivo Multicolor Bioimaging and Fluorescent Ink[J]. ACS Omega, 2018, 3(12): 17590-17601.
- [22] LI Yan-peng, REN Jun-li, SUN Run-cang, et al. Fluorescent Lignin Carbon Dots for Reversible Responses to High-Valence Metal Ions and Its Bioapplications[J]. Journal of Biomedical Nanotechnology, 2018, 14(9): 1543-1555.
- [23] WANG Jun, WANG Jian-ying, XIAO Wen-xin, et al. Lignin-Derived Red-Emitting Carbon Dots for Colorimetric and Sensitive Fluorometric Detection of Water in Organic Solvents[J]. Analytical Methods: Advancing Methods and Applications, 2020, 12(25): 3218-3224.
- [24] WANG Z, SHEN J, XU B, et al. Thermally Driven Amorphous-Crystalline Phase Transition of Carbonized Polymer Dots for Multicolor Room-Temperature Phosphorescence[J]. Advanced Optical Materials, 2021, 9(16): 1-7.
- [25] XU Li, ZHANG Yu-shu, PAN Hai-qing, et al. Preparation and Performance of Radiata-Pine-Derived Polyvinyl Alcohol/Carbon Quantum Dots Fluorescent Films[J]. Materials (Basel, Switzerland), 2019, 13(1): 67.
- [26] ZHANG Hua-dong, GONG Xin-chao, SONG Zi-hui, et al. Wood-Based Carbon Quantum Dots for Enhanced Photocatalysis of MIL-88B(Fe)[J]. Optical Materials, 2021, 113: 110865.
- [27] GONG Xin-chao, GAO Xing, DU Wen-xin, et al. Wood Powder-Derived Quantum Dots for CeO₂ Photocatalytic and Anti-Counterfeit Applications[J]. Optical Materials, 2019, 96: 109302.
- [28] 郭璇,莫文轩,刘旭亮,等. 落叶松木粉水热炭化制 备碳量子点及其性能研究[J]. 林产化学与工业, 2017, 37(1): 109-115.
 GUO Xuan, MO Wen-xuan, LIU Xu-liang, et al. Synthesis and Properties of Carbon Quantum Dots from Larch via Hydrothermal Carbonization[J]. Chemistry and Industry of Forest Products, 2017, 37(1): 109-115.
- [29] GB 8978—1996, 污水综合排放标准[S].

GB 8978—1996, Integrated Astewater Discharge Standard[S].

- [30] GB 5749—2006, 生活饮用水卫生标准[S].
 GB 5749—2006, Standards for Drinking Water Quality[S].
- [31] WANG Ying, LIU Yu-shan, ZHOU Jin, et al. Hydrothermal Synthesis of Nitrogen-Doped Carbon Quantum Dots from Lignin for Formaldehyde Determination[J]. RSC Advances, 2021, 11(47): 29178-29185.