基于 ANSYS 的温控包装圆柱体模型的建立

赵艳冰,钱静

(江南大学, 无锡 214122)

摘要:为简化温控包装设计计算,对实际温控包装系统建立了不同的圆柱体模型。将实际温控包装箱尝试向 不同圆柱体模型转化,使其设计方法更简便易行,借助 ANSYS软件对其进行了热传递分析和数值模拟,利用 转换模型的温控时间与实际温控系统的温控时间之间的相对误差,对各模型进行了筛选。结果表明,采用的圆 柱体模型与原立方体温控包装箱的内体积、厚度相等时,最能真实反映实际保温箱的传热过程。为降低包装成 本、优化温控包装设计方案提供了依据。

关键词:温控包装;圆柱体模型;ANSYS;保温时间

中图分类号: TB482 文献标识码: A 文章编号: 1001-3563(2012)09-0018-05

Establishment of Cylinder Models for Temperature Control Packages Based on ANSYS

ZHAO Yan-bing, QIAN Jing

(Jiangnan University, Wuxi 214000, China)

Abstract: Several cylinder models were established to simplify the design of temperature control package. Real temperature control package was transfer to different cylinder models to simplify design. Thermal transfer analysis and simulation were carried out using ANSYS. The relative error of temperature control time between transfer models and real temperature control system were used to select the best cylinder model. The result showed that the one who's inside volume and thickness is equal with real cubic temperature control package can reflect the real heat transfer process best. The purpose was to provide reference for reducing cost and optimizing temperature control package design.

Key words: temperature control package; cylinder model; ANSYS; temperature holding time

温控包装是指能够确保温度敏感性产品在贮藏、 运输、销售直至被消费者使用这一过程中的各个环节 始终处于合理的温度范围内,保护产品免受外界热力 破坏,保证产品质量的一种特殊包装形式^[1]。影响温 控包装阻热效果的因素众多,包括蓄冷剂种类、包装 材料的种类、包装容器和被包装产品的几何形状、尺 寸以及包装容器与被包装产品的接触面积等^[1-2]。

温控包装系统常见的包装形式为具有长、宽、高 的三维箱体。对于此类型三维几何容器的模拟,文献 中大多使用一维平板模型,或是在其基础上对包装容 器的角、边进行形状因子的加权热传递计算。这样的 计算往往是在已确定包装容器并对相变材料及用量 有所设定的情况下,对既定的温控包装系统进行温控 时间的估算;或是运输要求的温控时间和包装容器已 定,需要对蓄冷剂用量进行估算^[3-4]。在温控包装系统的设计过程中,希望在被包装产品确定的情况下,完成对包装容器的三维尺寸的设计和相变材料及用量的计算,实现客户要求的温控时间。为此,研究者根据温控容器的三维立体特征,将其转化成同样具有立体特征、却仅有一维热传递方式的球壳模型^[5],实现了三维热传递的一维化转变。由于三维立体模型转化为球壳模型存在一定的条件限制,即长方体的最长边与最短边之比须限制在 2.5 之内^[6],这使模型的使用受到限制。在此基础上,文中建立了圆柱体模型,假设柱体的最长边和立方体的最长边相等。运用ANSYS分析软件,分别对实际温控包装箱和通过不同转换方式得到的圆柱体模型的温控时间进行计算分析,比较各模型温控时间及其与实际温控包装箱的

收稿日期: 2012-01-10

作者简介: 赵艳冰(1988-), 女, 山东人, 江南大学硕士生, 主攻运输包装工程。

18

相对误差,从中找出实际温控包装系统转化为圆柱体 模型的最佳转化方案。

1 圆柱体模型的建立

假定实际温控包装箱内尺寸的长×宽×高分别 为 L×W×H(W<L<H),厚度为 Δx,转化成圆柱 体模型时,定义圆柱体的外径为 r_o,内径为 r_i,内尺寸 高仍然与原温控包装箱的高 H 相等,见图 1。

影响温控效果的主要因素包括模型的内表面面 积、外表面面积、内体积、外体积以及厚度,根据这些 因素,提出了如下 8 种模型转化方案。

模型1 圆柱模型与立方体容器内体积、外体积分别相等,即:

$$r_{i} = \sqrt{\frac{LW}{\pi}}$$
 $r_{o} = \sqrt{\frac{(L+2\Delta x)(W+2\Delta x)}{\pi}}$

模型2 圆柱模型与立方体容器内、外表面积分别相等,即:

$$r_{\rm i} = \frac{\sqrt{\pi^2 H^2 + 4\pi (LW + LH + WH)} - \pi H}{2\pi}$$

 $r_{\circ} = \frac{1}{2\pi} \{ \sqrt{\pi^{2} (H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x) + (W + 2\Delta x)(H + 2\Delta x)]} - \pi (H + 2\Delta x) \}$

模型 3 圆柱模型与立方体容器内表面积、外体积分别相等,即:

$$r_{i} = \frac{\sqrt{\pi^{2}H^{2} + 4\pi(LW + LH + WH)} - \pi H}{2\pi} \qquad r_{o} = \sqrt{\frac{(L + 2\Delta x)(W + 2\Delta x)}{\pi}}$$

模型 4 圆柱模型与立方体容器内体积、外表面积分别相等,即:

$$r_{\rm i} = \sqrt{\frac{LW}{\pi}}$$

$$r_{o} = \frac{1}{2\pi} \{ \sqrt{\pi^{2} (H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x) + (W + 2\Delta x)(H + 2\Delta x)]} - \pi (H + 2\Delta x) \}$$

模型 5 圆柱模型与立方体容器内体积、厚度分别相等,即:

$$r_{i} = \sqrt{\frac{LW}{\pi}}$$
 $r_{o} = \sqrt{\frac{LW}{\pi}} + \Delta x$

模型6 圆柱模型与立方体容器外体积、厚度分别相等,即:

$$r_{o} = \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x) + (W + 2\Delta x)(H + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x) + (L + 2\Delta x)(H + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x)]} - \frac{1}{2\pi} \{ \sqrt{\pi^{2}(H + 2\Delta x)^{2} + 4\pi [(L + 2\Delta x)(W + 2\Delta x)]} - \frac{1}{2\pi} \} \}$$

图 1 实际温控包装箱转换为圆柱模型示意 Fig. 1 Sketch map of transformation between real temperature control package and cylinder model

 $\pi(H+2\Delta x)$

2 模型假设

选取的蓄冷剂(相变材料)为冰,其相变潜热值 大、相变温度单一旦容易获得,是理想的试验材料。

暂不考虑被包装产品及其热特性对整个温控包 装系统热传递的影响,假设温控包装箱内充满压实后 的雪花状碎冰,实际温度为0℃。温控包装箱在运输 过程中,外界的温度高于箱体内温度,热量通过热传 递进入温控包装箱使箱内的冰逐渐融化,由固体状态 逐渐变为固-液共存的冰水混合物,直至完全融化为 水,热量继续传入温控包装箱,箱内温度急剧上升。1 号温控包装箱内温度变化见图 2。该过程伴随着复

图 2 1 号温控包装箱的温度变化

Fig. 2 Change of temperature in temperature control package 1

杂的热传递过程。为分析方便,对该模型进行如下假 模拟计算最终确定
 设:保温材料呈各向同性;忽略相变过程中固-液间的 面-面接触系数值
 对流现象;冰块与温控包装箱之间紧密贴合,ANSYS 模拟计算结
 计算中采用面-面接触系数表达热传递程度,通过模 与实际温控系统
 拟计算确定取值;外界通过热传递进入包装容器内的 理、正确。
 表2 温控系统实测及计算机模拟结果对比

热量全部被冰吸收;保温时间是指温控包装系统建立 直至蓄冷剂完全融化所经历的时间,亦即蓄冷剂完成 相变所需的时间。

3 温控系统实测及 ANSYS 模拟结果

试验中对 5 种规格的发泡聚乙烯温控包装箱进 行了实际温控时间试验。温控包装箱内放入雪花状 碎冰并压实,将温度记录仪的一个探头置于碎冰中 间,另一探头放置在温控包装箱外,分别用于监测温 控包装箱内外温度,将温控包装箱封口后放入恒温箱 内,试验中恒温箱温度设定为 50 ℃。

冰、水各温度点焓值和导热系数见表 1^[8]。温控

表1 不同温度下水或冰的导热系数和焓值

Tab.1 Thermal conductivity and enthalpy of ice

and water under different temperature

温度	导热系数	密度	焓			
/℃	$/(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	$/(kg \cdot m^{-3})$	$/(J \cdot m^{-3})$			
-10	2.32	918	0			
-1	2.20	917	3.78×10^{7}			
0	2.20	1 000	7.98 $\times 10^{7}$			
10	0.57	1 000	1.22×10^{8}			

包装箱运输时保存在封闭的集装箱内,储存时存放在 仓库内,不存在强制对流,文中只考虑自然对流。箱体 与外界环境间对流换热系数为 3~10 W/(m² · ℃)^[7], 模拟计算最终确定对流换热系数值为 7 W/(m² · ℃), 面-面接触系数值为 0.6 W/(m · K)。

模拟计算结果见表 2,采用上述参数的计算结果 与实际温控系统实测误差不超过 2%,参数选择合 理、正确。

编号	$L \times W \times H$ /mm	温控包装箱 厚度/mm	温控包装箱(EPS) 密度/(kg・m ⁻³)	导热系数 ^[6] / (W・m ⁻¹ ・K ⁻¹)	环境温度 /℃	实测保温 时间/h	ANSYS 模拟 保温时间/h	误差 /%
1	$86 \times 86 \times 140$	27	17.5	0.040	50.0	10.9	10.83	-0.61
2	$108\!\times\!155\!\times\!204$	38	22.0	0.037	49.5	19.0	19.33	1.75
3	$103\! imes\!161\! imes\!116$	27	17.5	0.040	50.0	14.1	14.25	1.07
4	$145 \times 145 \times 210$	50	30.0	0.036	52.5	23.0	23.17	0.76
5	$150 \times 180 \times 310$	20	19.7	0.040	50.0	19.0	19.29	1.53

Tab.2 Temperature holding time result of real measurement and computer simulation

4 圆柱模型优选

在计算机模拟过程中,以1号箱为例,选择分析

类型为热分析,设置 Solid 70 为所选单元类型,定义 材料的参数分别为:保温材料(EPS)密度 19 kg/m³, 比热容 1 800 J/(kg・℃),导热系数 0.04 W/(m・ K),蓄冷剂密度 600 kg/m³,导热系数 0.6 W/(m・

20 া

K),焓值见表 1,对流换热系数 7 W/(m² · ℃),面-面 接触系数 0.6 W/(m · K)。箱内冰初始温度为-1 ℃,箱外环境温度为 50 ℃。求解时设置最大步长为 500 s,最小步长为 120 s,求解时间为 60 000 s。应用 后处理器查看 60 000 s 时箱体温度场见图 3,提取箱 体最中间节点的温度变化见图 4。

6.183 6.41 6.638 6.865 7.093 7.32 7.548 7.776 8.033 8.231 图 3 60 000 s 时冰的温度场分布

Fig. 3 Nodal temperature of ice at 60 000 s

Fig. 4 Temperature variation of package center node

在最佳模型的选择过程中,假定温控包装箱内尺寸L =W=100 mm,厚度 Δx =20 mm,各模型的模拟结 果见表 5。实体温控包装箱和圆柱体模型温控时间 的相对误差见图 5。

表:	3 长方	体温控系	系统与不同	圆柱模型的计	算机仿	真结果	及误	差	
Fig. 3 Result and	l errors	between	rectangular	temperature	control	system	and	cylinder	models

°C

	长方体	模型	模型 1		模型 2		模型 3		模型 4		模型 5		켙 6	模型 7		模型 8	
H/W	容器	时间	误差	时间	误差	时间	误差	时间	误差	时间	误差	时间	误差	时间	误差	时间	误差
	时间/s	/ s	/ %	/ s	/ %	/ s	/ %	/ s	/ %	/ s	/ %	/ s	/ 1/0	/ s	/ %	/ s	/ %
1.0	37 600	40 100	6.65	42 100	11.97	41 600	10.64	40 600	7.98	39 600	5.32	41 100	9.31	41 600	10.64	43 600	15.96
1.3	41 600	44 600	7.21	47 600	14.42	46 600	12.02	45 600	9.62	44 100	6.01	$46 \ 100$	10.82	46 600	12.02	49 100	18.03
1.5	44 100	47 100	6.80	50 600	14.74	49 600	12.47	48 100	9.07	46 600	5.67	48 600	10.20	49 600	12.47	52 600	19.27
1.8	46 600	50 600	8.58	54 600	17.17	52 600	12.88	51 600	10.73	$50 \ 100$	7.51	$52\ 100$	11.80	53 600	15.02	56 600	21.46
2.0	48 100	52 260	8.65	56 460	17.38	$54\ 780$	13.89	53 600	11.43	51 600	7.28	53 600	11.43	55 600	15.59	59 100	22.87
2.3	50 160	54 200	8.05	59 400	18.42	56 960	13.56	$56 \ 040$	11.72	53 520	6.70	$56 \ 040$	11.72	$58\ 140$	15.91	62 040	23.68
2.5	51 000	55 620	9.06	61 100	19.80	58 560	14.82	57 300	12.35	$54\ 780$	7.41	$57 \ 040$	11.84	59 400	16.47	63 600	24.71
2.8	51 840	56 730	9.43	62 760	21.06	60 240	16.20	58 980	13.77	$56 \ 040$	8.10	58 980	13.77	61 500	18.64	65 700	26.74
3.0	$52\ 260$	56 880	8.84	63 600	21.70	61 080	16.88	59 820	14.47	$56 \ 460$	8.04	59 400	13.66	$62 \ 340$	19.29	67 900	29.93
3.3	52 800	58 200	10.23	65 040	23.18	$62\ 160$	17.73	60 360	14.32	$57\ 120$	8.18	60 360	14.32	$63\ 240$	19.77	69 080	30.83
3.5	$53\ 160$	58 400	9.85	65 400	23.02	62 520	17.61	61 080	14.90	$57\ 480$	8.13	60 720	14.22	63 960	20.32	70 440	32.51
3.8	53 520	58 780	9.83	66 120	23.54	62 880	17.49	$61 \ 440$	14.80	57 840	8.07	$61 \ 080$	14.13	64 600	20.70	70 800	32.29
4.0	53 520	589 201	10.09	66 480	24.21	63 240	18.16	61 800	15.47	57 840	8.07	$61 \ 080$	14.13	64 680	20.85	71 101	32.85
5.0	53 340	58 440	9.56	67 141	25.87	63 540	19.12	62 100	16.42	$57\ 240$	7.31	$61 \ 140$	14.62	65 000	21.86	70 740	32.62
6.0	53 340	59 040	10.69	67 440	26.43	63 840	19.68	62 040	16.31	57 990	8.72	$61 \ 140$	14.62	65 740	23.25	71 340	33.75
8.0	53 340	59 040	10.69	67 740	27.00	63 840	19.68	62 240	16.69	58 040	8.81	61 140	14.62	65 640	23.06	71 640	34.31
10.0	53 640	59 040	10.07	68 040	26.85	63 840	19.02	62 340	16.22	58 140	8.39	61 140	13.98	65 940	22.93	71 940	34.12

Fig. 5 Selection of the best model

从图 5 中可以可看出,随着最长边与最短边尺寸 比值的增加,误差总体呈上升趋势,并逐渐趋于稳定, 模型 5 和模型 1 的误差相对于其他模型较小且平稳, 能够更真实地反映实际温控包装箱的传热过程,因此 后续研究只针对模型 5 和模型 1 展开,以便从中比较 出最佳模型。

5 内尺寸对保温箱的影响

文中分析了厚度为 20 mm,内尺寸长宽均为 100

– 21

mm,高度从100~1000 mm的长方体温控包装箱转 化为不同圆柱体模型后的计算机模拟温控时间及误 差。为了使研究更全面,更具普遍性,增加长、宽、高 均为200,300,400,500,600,700,800 mm的模型,计 算按模型1和模型5转化后的温控时间及误差,并观 察其稳定性,见图6。

从图 6 中可以看出,随着边长的增加,误差不断 减小并趋于平缓,模型1 误差值稳定在4.8%左右,模 型5 误差稳定在3.6%左右。两模型波动范围都较 窄,且模型5 的误差更小,更接近于原长方体温控包 装系统。

6 厚度对温控模型的影响

为了讨论厚度对温控包装箱转化模型的影响,增加了厚度为10,30,40,50,60,80,100 mm时的相关 正方体模型。为了更具代表性,内尺寸为400 mm× 400 mm×400 mm,误差见图7。

图7显示出随着壁厚增加误差基本恒定,模型5

误差较小且较稳定,更能反映原立方体温控包装箱的 传热过程。

7 结论

在由计算公式得到圆柱体模型的基础上,运用 ANSYS 热分析,利用有限元法数值模拟各模型的传 热过程,得到其保温时间,并对误差进行分析可以得 出:采用的圆柱体模型与原长方体温控包装箱内体 积、厚度相等时,模型与实体保温箱保温时间之间误 差较小且误差稳定,最能真实反映实际保温箱的传热 过程。

参考文献:

- [1] CHOI Seung-jin, BURGESS Gary. Practical Mathematical Model to Predict the Performance of Insulating Packages[J]. Package Techno Sic, 2007, 20:369-380.
- [2] SINGH S P,BURGESS G,SINGH J. Performance Comparison of Thermal Insulated Packaging Boxes, Bags and Refrigerants for Sing Le-parcel Shipments[J]. Package Techno Sic, 2008, 21:25-35.
- [3] MATSUNAGA K, BURGESS G, LOCKH A H. Two Methods for Calculating the Amount of Refrigerant Required for Cyclic Temperature Testing of Insulated Packages[J]. Package Techno Sic, 2007, 20:113-123.
- [4] BURGESS G. Practical Thermal Resistance and Ice Requirement Calculations for Insulating Packages[J]. Package Techno Sic,1999,12:75-80.
- [5] QIAN Jing. Mathematical Models for Insulating Packages and Insulating Packaging Solutions[D]. TN: University of Memphis, 2010.
- [6] 郭晓娟. 基于 ANSYS 保温包装球壳模型的建立[J]. 包装工程,2011,32(6):43-48.
 GUO Xiao-juan. Spherical Shell Models for Insulating Packages Based on ANSYS[J]. Package Engineering, 2011,32(6):43-48.
- [7] 天子剑.找到一些对流换热系数取值的范围[DB/OL].
 [2009-04-27]. http://blog. sina. com. cn/s/blog_506c31510100cwpd.html.
- [8] 张朝晖. ANSYS 热分析教程与实例解析[M]. 北京:中国铁道出版社,2007.

ZHANG Chao-hui. ANSYS Thermal Analysis Course and Example Analysis[M]. Beijing: China Railway Publishing House, 2007.